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CHAPTER 19 -- FARADAY'S    LAW

19.1)
a.)  To begin with, note that the angle ξ is not the angle between A

and B--it is the angle between B and the coil's axis.  With that in mind:
The definition of magnetic flux is B.A, where B is the magnetic field
vector and A is the area vector (A's direction is PERPENDICULAR to
the coil's face).  The only way we can get no flux through the coil as the
coil rotates about its axis is if A and B are always perpendicular to one
another.  By observation, if the angle between the axis and B is ξ = 90o, A
and B will be perpendicular as shown in Figure I below, but will not be
perpendicular in Figure II.  On the other hand, if the angle between the
axis and B is ξ = 0o (i.e., if the axis is along the line of B) as shown in
Figure III, A and B will always be perpendicular.  That is the situation
we want (that is, we want ξ = 0o).

b.)  The number of winds has nothing to do with the magnetic flux
(φm= B.A) through the coil's area (it has to do only with the induced EMF
generated in the coil should the flux
CHANGE).  Noting how the angle ξ was
defined in the problem, we get the sketch
shown to the right.  With that sketch, we
can write the coil's magnetic flux as:

φm = B.A

φm = BA cos θ,
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FIGURE V
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where θ is the angle between B and A.  In this case, the angle is 60o (see
Figure IV).  Substituting in we get:

φm = (.065 T)[π(.15 m)2] cos 60o

       = 2.3x10-3 webers.

19.2)
a.)  Using Lenz's Law:

--Loop A:  No induced current as
there is NO CHANGING FLUX.

--Loop C:  The external flux is
decreasing.  A CLOCKWISE in-
duced current will produce an in-
duced B-field INTO the page
through the coil's face, which in
turn will produce an induced mag-
netic flux that will OPPOSE the de-
creasing external flux.

--Loop D:  No current as there is NO CHANGING FLUX.

--Loop E:  The external flux is decreasing.  A CLOCKWISE current
will generate an induced flux that will OPPOSE the decreasing external
flux.

--Loop F:  The externally produced flux is increasing.  A COUNTER-
CLOCKWISE current will produce an induced flux that will OPPOSE
the increasing external flux.

b.)  Using Faraday's Law:

--Loop A:  As there is no changing magnetic flux, the induced EMF
in that coil will be ZERO.

--Loop C:  We need to determine the loop's area-change ∆A over a
given amount of time ∆t.  In general, if the loop travels a distance d
moving with velocity v, we can write:

                v = d/∆t     ⇒    ∆t = d/v.

To travel, say, .05 meters going .28 m/s, it will take time:
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∆t = (.05m)/(.28 m/s)
     = .179 seconds.  

During that time the area of the coil inside the magnetic field goes
from Ao = (.08 m)(.15 m) to Af = (.08 m)(.1 m), or ∆A = Af - Ao = (.08 m)

(-.05 m) = -4x10-3 m2.  We know that the induced EMF will equal:

εc = -Nc[∆φm/∆t]

          = -Nc [B(∆A)(cos 0o)/∆t]

          = -(1)[(3x10-2 T) (-4x10-3 m2) (1) / (.179 s)]
          = 6.7x10-4 volts.

According to the current direction we determined in Part a, a positive
induced EMF evidently corresponds to a clockwise induced current.

--Loop F:  Following logic similar to that used on Loop C, and noting
that in this case the change of area goes from (.08 m)(.15 m) to (.08 m)
(.2 m), or ∆A = 4x10-3 m2, we can write:

           εF = -NF[∆φm/∆t]

    = -NF [B(∆A)(cos 0o)/∆t]

    = -(1)[(3x10-2 T) (4x10-3 m2) (1) / (.179 s)]
    = -6.7x10-4 volts.

As the positive EMF in Loop C corresponds to a CLOCKWISE current, the
negative EMF in Loop F should correspond to a COUNTERCLOCKWISE
induced current.  According to Part a, that is exactly what happens.

Note:  The EMF in Loop C and in Loop F have the same magnitude
because the change of flux during the .179 second time interval was the
same in both cases.

c.)  To get the force on a current-carrying wire that is bathed in a
magnetic field, we must apply the expression:

     F = iLxB

to each section of the wire in the B-field (see Figure VI on the next page),
then add up all the forces acting as shown below:
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FIGURE VI
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Loop F
     Fnet =  F1 + F2 + F3 + F4.

We know that the magnitude of L in,
say, wire section #1 is equal to that
portion of the wire in the B-field, or .15
meters.  We also know that the
magnitude of B is 3x10-2 teslas.  What
we don't know is the magnitude of the
induced current i.  To get that, we
must determine the induced EMF,
then use i = εB/R.  Using the
MAGNITUDE of the induced EMF from Part b (we just want the
magnitude for the current calculation--we already know the current's
direction is counterclockwise from Part a), we get:

i = εB/R

   = (6.7x10-4 v)/(4 Ω)
   = 1.68x10-4 amps.

Noting that there is no magnetic force being applied to wire section
#2 because it is not in the magnetic field, we get:

Fnet =          F1               + F2 +           F3             +           F4
         = iL1B sin 90o(+i) + 0 + iL3B sin 90o(-i) + iL4B sin 90o(+j)

         = iL4B sin 90o(j)

         = (1.68x10-4  A)(.08 m)(3x10-2T)(1) (j)
         = (4.032x10-7 nts) (j).

Does this make sense?  Certainly!  The induced force will always
oppose the motion.  As the motion is downward, the net induced force
should be upward in the +j direction.  That is exactly what we have
calculated.

Isn't this fun?

d.)  The net force on Loop A and Loop D will be zero as the induced
EMF in those loops is zero (hence the induced currents are zero).  The
induced force in Loop C will have the same magnitude as that of Loop F,
but the direction will be different.  How do you determine that direction?

The direction of the cross product iLxB yields the direction.  Try
using it.  Notice that the direction of the force is always such that it
opposes the physical motion of the coil.  In the case of Loop C, the coil is
moving in the +i direction, so the force will be in the -i direction.
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19.3)
a.)  The magnetic flux is:

φm = B.A

φm = BA cos θ

       = (2.3 T)[π(.03 m)2] cos 0o

              = 6.5x10-3 webers.

b.)  The area vector is not changing.  The magnetic field vector is
changing and we know the rate at which that change occurs (i.e.,
dB/dt).  Noting that dφm = A(dB) and, for this case, dφm/dt = A(dB/dt),
Faraday's Law can be written as:

         ε = -N [dφm/dt]

= -N  [      A            (dB/dt)   (cos 0o)]
     = -(6) [π(.03 m)2   (.6 T/sec)     (1)   ]
     = -1x10-2 volts.

Using i = ε/R, we get a current magnitude of:

i = (10-2 v)/(12 Ω)
  = 8.33x10-4 amps.

According to Lenz's Law, the current should flow CLOCKWISE.

c-i.)  The frequency of the AC current will be the same as the
frequency of the coil's rotation.  As ω = 2πν, we can write:

 ν = ω/2π
    = (55 rad/sec)/(2π)
    = 8.75 hz.

c-ii.)  In this case, B and A are constant while the angle between the
two vectors changes with time.  We can write the angle as a function of
time by noting that θ = ωt.  With this, Faraday's Law yields:

      

    

ε φ
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N
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Putting in the numbers yields:

  ε = 2.15sin(55t)  volts.

Note:  We could have added a phase shift factor in the original cosine
function if we wanted the magnetic flux to be something other than maximum
at t = 0.  In fact, if we had made the phase shift -π/2, we would have ended up
with the magnetic flux acting like a sine function and an EMF that was acting
like a cosine function.

19.4)  In this case, A is constant while B changes.

a.)  Noting that the angle between B and A is 0o, Faraday's Law
yields:

         ε = -N[∆φm/∆t]

     = - N    [(  Bf   -    Bo    ) A cos 0o]/    ∆t

= -(80) [(.04 T - .12 T)(.12 m)2] / (2.4 sec)
     = 3.84x10-2 volts.

Note:  This approach appears to be considerably different than the one
used in Problem 19.3.  How does one know which approach to use when?  Look
to see what is given.  If you know the rate at which B changes (i.e., dB/dt), the
approach used in Problem 19.3 will do.  If you are given specific B values at
specific times, then (B2 - B1)/t will do.  LOOK TO SEE WHAT IS GIVEN.

b.)  Using Lenz's Law:  The external field is decreasing INTO the
page.  Only a CLOCKWISE current will produce an induced flux that
will diminish that decrease (i.e., add to the already existing, decreasing,
external flux).

c.)  Using i = ε/R, we get a resistance magnitude of:

  R = (3.84x10-2 v)/(.15 A)
      = .256 Ω.
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19.5)

a.)  Before the current begins to change, the only voltage drop across
the inductor is due to the internal resistance inherent within the
inductor's wire.  That means:

VL = irL
       = (2.5 a)(6 Ω)
       = 15 volts.

b.)  The time constant for an inductor/resistor circuit tells us how
long it takes for the current to reach .63 of its maximum (assuming the
switch closes at t = 0) or, if the system has been turned off as is the case
here, the time it takes for the current to FALL to .37 of its maximum.  In
other words, knowing that it took .05 seconds to hit approximately one-
third of its original value after the switch is opened means the time
constant for the RL circuit is approximately .05 seconds.  Noting that the
total resistance in the circuit is (rL + R) and remembering that the time

constant for an RL circuit is ΓRL = L/(R + rL), we can write:

     L / (R + rL) = .05

⇒       R + (6 Ω) = [(1.5 H) / (.05)]
      ⇒       R = 24 Ω.

c.)  The energy stored in a current-carrying inductor is equal to
(1/2)Li2.  If that value decreases, which it will as the current decreases,
the "lost" energy goes into driving current in the circuit even longer
than expected (remember, inductors are coils and coils hate to have the
flux through their cross-section change).  The amount of energy pro-
vided to the circuit is equal to (1/2)Lif

2 - (1/2)Lio
2 (this number will actu-

ally be negative--the negative telling you that the inductor is losing that
amount of energy to the circuit). As POWER is defined as the work done
(read this "energy given up") per unit time, then:

P = [(1/2)Lif
2 - (1/2)Lio

2]/∆t

    = [.5(1.5 H)[.33(2.5 a)]2 - .5(1.5 H)(2.5 a)2]/(.05 sec)
    = -83.5 watts.

d.)  The energy goes into driving current through the circuit even
after the battery has been taken out of the circuit by the switch.  That is,
if the resistor is a light bulb, it will "burn" very bright with the initial
change, then dampen out over some period of time (how long this takes
depends upon the resistance in the circuit).
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19.6)

a.)  As the induced magnetic force will oppose the acceleration, the
induced current must be clockwise (a clockwise current will feel a net
upward force as it moves through the magnetic field).

b.)  At terminal velocity, N.S.L. implies:

   ΣFy:
          -mg + Finduced = may

                        = 0

as terminal velocity requires that ay = 0.
We know that Finduced = iinducedLxB.  The forces on the two side

wires will add collectively to zero.  The upper, horizontal wire is in the B-
field.  It will feel an upward force as it attempts to leave the field in a
downward direction (the direction of this force is evident either by evalu-
ating the force-defining cross product or by remembering that induced
forces are always directed OPPOSITE the direction of
the coil motion that causes the changing flux).

We know that the magnitude of the upper length of
wire is wupper = .6 meters and that the magnitude of B
is .85 teslas.  To finish the problem, all we additionally
need to determine is i.  To get this, we will use
Faraday's Law to determine ε, then use i = ε/R.

To get ε, we need to determine a general expression
for the area of the coil inside the magnetic field at an
arbitrary point in time.  In this case, this expression
will be A = (h - y)w--see the sketch to the right.

Knowing all of this, Faraday's Law for the general
case becomes:
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Using i = ε/R, we get a current magnitude of:

       

    

i
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R
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ε

  .

With the current, we can determine the magnitude of the induced
magnetic force Find at any point in time as:
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Using this with our N.S.L. expression for the terminal velocity situation,
we can write:
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NB w v
R

mg

v
mgR

NB w

induced

ter al

ter al

=

⇒ =

⇒ =

          

          

2 2

2 2

min

min .

Noting that N = 1, w = .6 meters, and B = .85 teslas, terminal velocity
is found to be  vterminal = 39.6 m/s.

c.)  According to the analysis done above, the velocity of the loop at
any arbitrary point in time will be related to the induced EMF by:

  ε = NBwvy,

with the current in the loop at any instant being:

         

    

i R
NBwv

R
y

=

=

ε /

. 
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With gravity and the force due to the magnetic field unequal, the
acceleration will be non-zero.  Setting vy = v and using N.S.L. yields:

ΣFy:

        

    

i x mg m
dv
dt

iwB mg m
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dt

NBwv
R

wB mg m
dv
dt

o

o

w B
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Expanding, we get:
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Integrating from t = 0 (i.e., from when the velocity is v = 0) to some
arbitrary point in time, we get:
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To get rid of the ln function and unembed the velocity term, each
expression must be made into the exponent of the exponential e.  That is:
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Does this make sense?  Yes!  At t = 0, the expression reduces to zero.
At t = ∞, the expression reduces to mgR/(NB2w2)--the terminal velocity.
The equation works nicely at the extremes--always a good sign!

19.7)
a.) As was done in Problem 19.3c, we can take care of the rotation by

writing the time-varying angle between A and B as θ = ωt (we can put in
the ω = 2πν later).  That makes the magnetic flux look like:

      
    

φ θ

ω
m o

o
kt

o

BA

B e A t

=

= ( )−

cos

cos .     

The induced EMF is:
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b.)  To determine the maximum value of the EMF, we must
determine the time when the rate of change of the EMF is zero (this is a
standard maximization problem).  Doing this process yields:

    

d
dt
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The time-derivative of the EMF expression yields the slope of the
EMF function.  As maxima or minima have tangent-slopes equal to
zero, we can write:
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Canceling out the NBoAoe-kt terms and multiplying by -1, we can write:
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Be impressed.  The units of the inverse tangent are radians; the
units of the coefficient are seconds (remember, because radians is a



Solutions--Ch. 19  (Faraday's Law)

527

generic term, the units of ω is technically seconds-1).  Everything seems
to be working, at least as far as the units go.

19.8)
a.)  Evaluating B = 12t3 - 4.5t2 at t = .2 seconds yields B = -.084 teslas.

The negative sign implies that B is into the page at t = .2 seconds.

b.)  The general expression for the magnetic flux is:
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c.)  The induced EMF is:
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d.)  The EMF will equal zero when 36t2 - 9t = 0.  This will occur at t =
0 and at t = 9/36 = 1/4 = .25 seconds.

e.)  How the magnetic flux changes is what governs the direction of
the induced current.  Although it isn't always true, in this problem the
changing flux is due solely to the changing magnetic field (A and the
angle between A and B are both fixed).  In other words, for the just
before t = .25 seconds part, we need to know:

--How the external magnetic field is changing just before t = .25
seconds (this will tell us if the induced magnetic field adds to or
subtracts from the external magnetic field) and;

--The direction of the external magnetic field just before t = .25
seconds (this tells us in which direction the addition or subtraction must
occur).
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0To make things easier,
let's begin by graphing the
magnetic field function.  To
do so:

--We will use the
magnetic field expression
given in the problem for
points in time around t = .25
seconds, and;

--We can use the fact
that the EMF is zero at t =
.25 seconds (that means the
slope of the magnetic flux
must be zero at that point in time which, in this case, means the slope of
the magnetic field expression must be zero at that point in time).

--Putting it all together, we get the graph shown in the sketch.
Using the graph:

i.)  Just before t = .25 seconds:
--From the graph, the magnetic field is negative and, hence, into

the page just before t = .25 seconds.
--The magnetic field is getting bigger (i.e., more negative) just

before t = .25 seconds.
--An increasing magnetic field (hence, magnetic flux) will

induce a current that fights the increase.
--The induced magnetic field that fights an increasing external

magnetic field directed into the page will itself be directed out of the
page.

--The induced current that produces such an induced field will
be in the counterclockwise direction.  That is the direction of the
induced current before t = .25 seconds.

ii.)  Just after t = .25 seconds:
--From the graph, the magnetic field is still negative and, hence,

into the page just after t = .25 seconds.
--The magnetic field is getting smaller (i.e., it's proceeding back

toward zero) just after t = .25 seconds.
--A decreasing magnetic field (hence, magnetic flux) will induce

a current that fights the decrease.
--The induced magnetic field that fights a decreasing external

magnetic field directed into the page will itself be directed into of the
page.

--The induced current that produces such an induced field will
be in the clockwise direction.  That is the direction of the induced
current after t = .25 seconds.
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Note:  The EMF at t = .2 seconds is -.36NπR2 while the EMF at t = .3
seconds is .54NπR2.  As the EMF and the change in flux are essentially the
same, this tells us that the changes are different on either side of t = .25
seconds and, hence, that the induced currents will be in different directions.
This is really the only generalization we can make from the EMF information.

f.)  The relationship that is important here is:

        
    
N

dφm

dt
= − E • dl∫ ,

where E is the electric field evaluated along a differential path-length dl.
In most problems, the magnitude of E is assumed to be constant and in
the direction of dl, so the above equation becomes:
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In this case, the integral is simply adding differential sections around a
closed circular loop (i.e., the integral equals 2πr, where r is the radius of
the circular path).  Using this, we get:
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g.)  N.S.L. maintains that F = ma.  As the force in this case is
generated by the electric field E, we can also write F = qE.  Combining
the two, we get a = qE/m.  Substituting R/2 for R in the general electric
field expression derived above, we get:
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Note:  The electric field at t = 3.33 seconds is only 4.14x10-3 nt/C.  What
makes this acceleration so large is the charge to mass ratio q/m.

19.9)  This problem is similar to
Problem 19.3c with one big exception--the
magnetic field is produced by a current-
carrying wire and, hence, is not constant
throughout the area encompassed by the
face.

a.)  We need to determine the flux
through a differential area within the
face, then integrate to determine the
net flux at a given instant.

The magnetic field is caused by
the current-carrying wire.  We could
derive the B-field expression using Ampere's Law if we didn't already
know it.  As we have already derived that expression, we will assume we

know it (it is 
  
Bwire = µoiwire

2πh
, where h is the distance between the wire and

the position of interest).  The sketch defines the differential quantities
needed to execute the flux calculation.  Using them and our magnetic
field expression, we get:
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With this, we can use Faraday's law to determine the induced EMF:
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b.)  With the induced EMF expression, we can determine the current
i and, from iLxB, determine the force on the bar as it moves in the
magnetic field.  Executing all that yields:
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= ε
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R

Newton's Second Law yields:

ΣFy:

-iinducedLxB - mg + Fyou = ma,

where B is the magnetic field evaluated at the bar's position (i.e., at y).
For a constant velocity, a = 0.  Noting this, using B due to a wire,
observing that N = 1, and substituting in for iinduced, we have:

−
π





 π







− + =

⇒ =
π







+

µ µ

µ

o wire
y

o wire o
you

you
o wire

y

i L
yR

v L
i

y
mg F

F
i L

y R
v mg

2 2
90 0

4

2 2 2

2 2

sin

.          



532

19.10)
a.)  The inductor-induced EMF across the primary when there is no

current change in the circuit is zero.

b.)  When there is a current change in the primary circuit, the
inductor-induced EMF setup across the primary coil is:

   εp= -L (∆i/∆t)

       = -(10-2 H)[(0 - 8.25 A)/(.04 sec)]
       = 2.06 volts.

c.)  The only voltage in the circuit after the switch is opened is that
due to the induced EMF across the primary coils of the transformer.  As
such:

    ip = εp/R
         = (2.06 v)/(80 Ω)

        = .0257 amps.

d.)  In the secondary circuit, there is no power supply.  There is also
no changing flux before the switch is opened.  Therefore, the induced
EMF across the secondary will be ZERO before the switch is opened, and
the induced current will also be zero.

e.)  After the switch is opened, the secondary current will be such
that:

Np/Ns = is/ip
⇒     is = ipNp/Ns

 = (.0257 amps)[1200/25]
 = 1.23 amps.

f.)  As Ns< Np, the transformer must be a step-down type (the
secondary voltage is stepped down relative to the primary voltage).


